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GALLOPING OF BUNDLE CONDUCTOR
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A useful design tool is developed for a bundle conductor of an electrical transmission line
by using a three-degree-of-freedom hybrid model. The model is adaptable because it
incorporates numerical mode shapes determined by numerically employing the "nite
element technique to form relevant matrices. On the other hand, it is quite computationally
e$cient because analytical expressions are used to investigate the initiation and steady state
amplitudes of galloping. The model accommodates interactions of the vertical, horizontal
and torsional movements, non-linear aerodynamic loads, a non-uniform ice geometry,
distributed and discrete galloping control devices, and a variation of the wind along a span.
By neglecting the sub-span motions between the conductors, a bundle is modelled as an
equivalent single conductor so that the initiation conditions for galloping, periodic and
quasi-periodic states and their stability conditions are considered by taking advantage of
previous achievements for a single conductor. Numerical examples are presented to assess
the accuracy of the results obtained from the model in comparison with analogous data from
a more sophisticated "nite element analysis. Parametric studies are reported for limit cycle
amplitudes with variations of the critical wind speed, wind speed above the critical wind
speed, static tension and span length.

( 2000 Academic Press
1. INTRODUCTION

High-voltage transmission lines are often arranged in multi-conductors per phase to
increase the power capacity of a circuit. They are often subjected to wind-induced
vibrations. Galloping, which is a low-frequency, high-amplitude oscillation caused by
a steady wind, happens more easily on a bundle conductor than on a single conductor [1].
Although considerable e!ort has been expended for many years to predict the galloping of
a bundle conductor from that of a simpler single conductor, the extrapolation has still not
been resolved satisfactorily. One reason is that existing analytical and computational
models are either oversimpli"ed or they lack the e$ciency needed to economically compute
the e!ects of design changes in parameters [2}4] like the static tension, the span length and
the number of conductors in a bundle or the result of a greater wind speed.

Most previous analytical studies of bundle conductors have been limited to a planar
con"guration [5}10]. However, "eld observations indicate that galloping often involves the
simultaneous interaction of a horizontal motion with vertical and torsional movements [1].
Although a three-degree-of-freedom (3d.o.f.) analytical model has been formulated recently
for a bundle conductor [11], a tedious time-integration procedure was adopted and the
aerodynamic forces were over simpli"ed by their linearization. On the other hand, a more
realistic, yet computationally e$cient, 3d.o.f. model has been developed in the last decade to
determine the initiation conditions for galloping as well as the ensuing dynamic limit cycle
motion but only for a single conductor [12}15]. However, practically important non-
uniformities arising, say, from icing variations or localized control devices like air#ow
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116 Q. ZHANG E¹ A¸.
spoilers or detuning pendulums cannot be accommodated. The aim of this paper is to
overcome this de"ciency and extend the single conductor approach to a bundle
con"guration having any number of conductors. Therefore, an adaptable but still
computationally e$cient 3d.o.f. hybrid model is developed that uses "nite element (FE)
mode shapes, instead of their analytical counterparts, to construct the model and couple it
to analytical expressions [15] to investigate the initiation and steady state amplitude of
galloping.

Only the commonly occurring bulk motion of a bundle con"guration [1] is studied in
which all the conductors move in phase. Then it is only necessary to consider, in detail, a
reference curve that "ctitiously connects the mass centers of the bundle's cross-sections. In
other words, the reference curve is analogous to a single conductor but its motion can be
extrapolated to the individual conductors of a bundle. Predictions are compared with
analogous data from a more sophisticated FE analysis. The latter uses time averaging
rather than time integration to signi"cantly reduce the still appreciable computational
e!ort. Results from parametric studies are presented for critical wind speeds, which are
important to the initiation of galloping, as well as for limit cycle amplitudes at di!erent
wind speeds, static tensions and span lengths.

2. HYBRID MODEL

Although an arbitrary number of conductors is considered, the particular example of
a twin conductor bundle is illustrated in Figure 1 for simplicity. Figure 1(a) presents the
static positions of the two conductors that are produced by the conductors' weights and
tensions as well as by the steady (side) wind and the weight of accreted ice. A typical
cross-section of the ith iced conductor (where i"1, 2 for the twin bundle) is shown in
Figure 1(b). Physical rigid spacers joining the conductors are illustrated as solid lines.
Weightless, rigid "ctitious spacers are introduced that periodically join the conductors to
ensure that they essentially move together (i.e., the bulk motion constraint). Of course such
spacers, which are represented in Figure 1(a) by dashed lines, are not needed for a single
conductor. The reference curve for the bundle is considered to go through the mass center of
each cross-section of the bundle, as indicated in Figure 1(a). On the other hand, adjacent
spans are always idealized, as for the single conductor, by equivalent linear springs.
Therefore, the principal di!erence between the single and bundle conductor approaches is
the advancement of "ctitious spacers and a reference curve for a bundle con"guration.

The hybrid model makes the following assumptions in order to extend the single
conductor formulation to a bundle conductor.
(1) Inertial and damping forces in the longitudinal direction, as well as the rotation of
individual conductors about this direction, are neglected. (2) A line's sag-to-span ratio is
small. (3) The rotation of the bundle about the reference curve is small and spacers are rigid.
(4) No more than one mode per global direction is considered simultaneously. (5) The
relative motions between the conductors of a bundle are neglected and the longitudinal
motions of each of the conductors are presumed to be identical.

Items (1), (2) and (5) are the commonly made assumptions for the bulk motion of a
bundle. The third item is reasonable in many cases because a bundle's torsional sti!ness is
much greater than that of a single conductor so that large rotations happen rarely. Item (4),
on the other hand, presumes that the larger torsional sti!ness of a bundle hardly changes
the negligible coupling that is assumed for the single conductor for modes acting in the same
direction. These simplifying assumptions are used next to formulate the hybrid model.



Figure 1. Showing (a) the bulk modelling of a twin bundle conductor, and (b) the cross-section of the ith iced
conductor.
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2.1. DISPLACEMENT RELATIONSHIP

The dynamic displacement at an arbitrary point (s, y, z) of any one conductor in a bundle
is measured from that point's static position. It is given by

u
X
(s, y, z, t)"; (s, t), v

Y
(s, y, z, t)"<(s, t)!zH(s, t), w

Z
(s, y, z, t)"=(s, t)#yH(s, t).

(1)

X,> and Z are the global co-ordinates illustrated in Figure 1(a) while x, y and z are the local
co-ordinates shown in Figure 1(b). The latter are o!-set from the global co-ordinates and
their origin is located on the reference curve at the left support. u

X
, v

Y
and w

Z
are the global

displacements at (s, y, z) and instant t. Their direction is indicated by the corresponding
su$x. On the other hand, s is the intrinsic co-ordinate which indicates the distance that a
cross-section of the bundle is from the reference curve's origin. ;, < and= are the global
displacements of any point of the reference curve in the X, > and Z directions respectively.
H is the rotation of the bundle about the reference curve and it is assumed to be small. If
only one mode is considered in each direction, then ;, <, = and H can be expressed as

;(s, t)"q
u
(t) f

u
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v
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(2)

The q
i

and f
i
, where i"u, v, w, h, are generalized co-ordinates and the associated

mode shapes provided by the FE model, respectively (see Section 3). Furthermore,
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the displacements of the center of the ith conductor in the bundle, ;
i
, <

i
and =

i
, are

described by

;
i
(s, y, z, t)";(s, y, z, t), <

i
(s, y, z, t)"< (s, t)!r

i
sin h

i0
H (s, t),

=
i
(s, y, z, t)"=(s, t)#r

i
cos h

i0
H (s, t). (3)

Here r
i
is the distance between the reference curve and the center of the ith bare conductor

at the bundle's cross-section of interest. Moreover, h
i0

is the initial clockwise angle of this
conductor from the positive direction of the y-axis, as illustrated in Figure 1(b).

2.2. EQUATIONS OF MOTION

The equations of motion of the bundle are found by employing the conventional
variational principle [16], i.e.,

P
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t1

d (¹
k
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s
) dt#P

t2
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d=
nc

dt"0, (4)

where ¹
k
and <

s
are the total kinetic and strain energies respectively.=

nc
is the work done

by the non-conservative forces and d indicates the "rst order variation. By neglecting the
inertial e!ects in the longitudinal direction, ¹

k
is given by
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where ¸ is the total length of a line in a span, o is the mass density of the iced bundle
conductors' total cross-sectional area A

T
, m

sk
and I

sk
are the mass and the mass moment of

inertia of the kth spacer, respectively, s
k

is the intrinsic co-ordinate of the kth spacer's
intersection with the reference curve, p is the number of spacers, and a dot superscript
indicates di!erentiation with respect to time, t. The variation of the strain energy for a
bundle's bulk motion, d<

s
, can be obtained by summing the strain energies of each of its

conductors [15, 17], i.e.,
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Su$x i in equation (6) represents the ith conductor again and n is the total number of
conductors in a bundle. e

s
is the Lagrangian strain of the ith conductor, along s, such that
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On the other hand, the torsional strain of a conductor, eh , can be expressed as

eh(s)"
LH(s)

Ls
. (8)

¹ in equation (6) is the static tension in each conductor, M
t
is a conductor's initial internal

twisting moment that resists the external moment caused by an eccentric ice weight, A and
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GJ are the cross-sectional area and the torsional rigidity of a bare conductor, respectively,
E is the modulus of elasticity and B

T
represents an axial-torsional coupling [18].

The variation of the virtual work is described by

d=
nc
"P

L

0
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(s)d<#F
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(s)d=#Fh(s)dH] ds!dqT
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a
. (9)

F
y
, F

z
and Fh are the aerodynamic loads (per unit span length of the bundle) which act at the

reference curve in the y, z and h directions respectively. C
a

is an experimentally found
damping matrix that takes the form

C
a
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0
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CD , (10)

where 0
3

is the 1]3 null matrix. On the other hand, the elements of the diagonal matrix
C are
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u
i
(i"y, z, h) and m

i
(i"y, z, h) are, respectively, the bundle's undamped, uncoupled natural

frequencies and the measured damping ratios associated with the uncoupled vibrations in
the direction indicated by a subscript. m

ii
are the elements of the matrix M de"ned in

equation (14). Finally, q
a

in equation (9) is de"ned by
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Substituting equations (5)}(12) into equation (4) yields the equations of motion as
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a
, (13)

where M
a
and K

a
are a 4]4 mass matrix and sti!ness matrix respectively. M

a
takes the form

M
a
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0
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and the non-zero elements of M and K
a
are given more conveniently in Appendix A. The

aerodynamic load vector, F
a
, in equation (13) is found at the reference curve from

aerodynamic data measured at the centers of the individual conductors of a bundle. It is
represented as

FT
a
"(0 FT ). (15)

The components of FT"(F
y

F
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Fh) are expressed conventionally as non-linear functions of
the wind's angle of attack a, the conductor's diameter d, side wind speed;

z
, and the density

of air, o
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. In an analogous fashion to a single conductor, they are approximated in
Appendix A as cubic polynomials in a where
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Figure 2. The initial arrangement of iced C11 conductors in (a) a twin bundle, (b) triple bundle and (c) quad
bundle con"guration.
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and approximating the characteristic radius [12] by d/2. The major di!erence for a bundle
conductor is that the reference curve is used to de"ne a rather than the single conductor
itself (see, for example, Figure 2). It is assumed, for simplicity, that the aerodynamic
interactions between the di!erent conductors of a bundle are negligible. This assumption
appears intuitively more reasonable for wider separations of the conductor. For example, it
seems increasingly plausible when the separation between the conductors of a twin bundle is
enlarged beyond 10 conductor diameters [19]. Then the aerodynamic forces and moments
measured for an individual conductor can be merely summed at the reference curve. Details
of the basic aerodynamic loads considered here are given in reference [15]. They correspond
to the single iced conductor illustrated in Figure 1(b).

The equations of motion for the condensed 3d.o.f. system are obtained from equation (13)
by partitioning K

a
so that

K
a
"C

k
11

KT
2

K
2

K
3
D . (18)

By eliminating the terms associated with the axial displacements, equation (13) becomes

MqK#Cq5 #Kq"F, (19)

where
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3
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K
2
. (20)



3. FINITE ELEMENT MODEL
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Consider a bundle consisting of n conductors. Each conductor is considered to have n
p

nodes. The jth nodes of all the conductors are assumed to be connected either by a physical
or a "cticious, rigid spacer. In the FE formulation, the relevant mass, sti!ness and damping
matrices as well as the nodal force vector are formulated for each conductor of the bundle.
These equations are transformed to the reference curve with the help of the physical or
"cticious rigid spacers.

All but two of the assumptions used to develop the hybrid model are utilized in the FE
modelling of a bundle conductor. The exceptions avoid the neglect of the longitudinal
inertias and the assumption of solely a single mode acting in a speci"ed direction. Details of
the FE formulation have been given previously for a single conductor [20]. As before,
a conductor is represented by employing three node, isoparametric cable elements. After
forming the equations of motion for each conductor, transforming them to the reference
curve and assembling the matrices, the "nal equations take the form

[M]MqK N#[C]MqR N#[K]MqN"MFN, (21)

where
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are the global displacements of node j of the reference curve and H(i)
j

is the
rotation of the bundle about the reference curve. The [M(i)], [C(i)] and [K(i)],
i"1, 2,2, n, are, respectively, the mass, damping and sti!ness matrices of size 4n

p
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MF(i)N is the corresponding load vector of size 4n
p
]1. The construction of these matrices is

given in reference [20]. [¹(i)] is a 4]4 transformation matrix whose non-zero elements are
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. Again, r

i
is the distance

between the reference curve and the center of the ith bare conductor and h
i0

is the initial
clockwise angle of this conductor as viewed from the positive direction of the y-axis; see
Figure 1(b). If the Delta function, d

sj
, is denoted by
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for a massless, fictitious spacer introduced at node j,

for a physical spacer having an end at node j,
(23)

then the diagonal mass matrix, [M
s
], in equation (22), which represents the contribution

from the physical spacers' inertias, can be written as
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The diagonal matrix [M
sj
] is given by

[M
sj
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m
sj

0 0 0

0 m
sj

0 0

0 0 m
sj

0

0 0 0 I
sj

, (25)

where m
sj

and I
sj

are the mass of the physical spacer and its mass moment of inertia about
the reference curve at node j respectively. Note that the mode shapes, f

u
(s), f

v
(s), f

w
(s) and

fh (s) in equation (2) are taken in the discretized form

( f
u
, f

v
, f

w
, fh)"(;i, <i,=i, Hi). (26)

4. STABILITY ANALYSIS AND LIMIT CYCLES

Steps involved in the stability analysis of the static con"guration and the determination
of the limit cycles are detailed in reference [15] for the hybrid model or in reference [21] for
the FE model. Hence, only a brief description is given here.

The "rst step in determining the feasibility of galloping is to investigate whether the initial
equilibrium solution (IES) of the linearized form of equation (19) or equation (21) is stable. If
all the eigenvalues of the homogeneous equation (19) or equation (21) have a negative real
part, then the static con"guration is asymptotically stable and a further analysis is not
required. If, however, at least one of the eigenvalues crosses the real axis (a critical point)
when a parameter changes, say an increasing wind speed;

z
, then the IES becomes unstable

and galloping may be initiated. The critical wind speed, ;
zc

, is the value at which the IES
just becomes unstable. Once the IES becomes unstable, new equilibrium states or dynamic
motions, which are periodic or quasi-periodic, may emerge from the critical point. (Note
that chaotic states are not investigated.) Perturbation techniques are employed to study the
dynamic motions and to "nd the limit cycles' amplitudes. Explicit expressions to determine
the IES and the limit cycles' amplitudes are given in reference [15] for the hybrid model. On
the other hand, a step-by-step procedure is given in reference [21] for computing the
dynamic motion using the FE model.

5. NUMERICAL RESULTS

A trend analysis that arises from changes in key parameters like the horizontal tension of
a conductor, span length, structural damping, critical wind speed, wind speed above critical
wind speed, etc. is important for engineers. Therefore, numerical results focus on the e!ects
of a bundle's parameters on galloping.

The examples considered here assume that the iced conductors have simple end supports
which permit longitudinal degrees of freedom so that a more realistic interaction can be
accommodated between adjacent spans. Ice accumulations on the conductors, whose
asymmetry may cause the conductors' instability, are obtained from a single conductor
sample placed in a freezing rain simulator [19]. The resulting (C11) cross-section is
illustrated in Figure 2. It resembles the D form used traditionally to induce galloping in "eld
trials [22]. This particular ice formation is assumed to be accreted identically on each
conductor. In other words, variations in the ice shape that could arise from one conductor
partially shielding another conductor from the wind are ignored for simplicity. The wind
speed is also presumed to be constant along the span.
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5.1. NATURAL FREQUENCIES AND LIMIT CYCLES

Limit cycle amplitudes, mainly the components in the vertical and horizontal directions,
are important in avoiding an electrical #ashover or the clashing of conductors. They are
related not only to the aerodynamic loads but also to the natural frequencies of the
conductors. In particular, natural frequencies determine if an internal resonance happens
which, in turn, crucially a!ects the dynamic behavior of the conductors. An internal
resonance occurs when the ratio of at least two of the natural frequencies is close to a ratio
of two positive integers. The parameters in Table 1 are selected so that the lowest horizontal
mode participates in an internal resonance. In this table, I is the centroidal inertial moment
of the bare conductor; e

y
and e

z
represent the eccentricity in the y and z directions

respectively. A
ice

is a total cross-sectional area of the iced conductor and m is the
corresponding mass per unit length. Table 2 gives a comparison of the lowest three natural
frequencies of various bundles and a single conductor in plunge (vertical), swingback
(horizontal) and torsion that are predicted by the hybrid and FE models. The "nite element
model has 21 nodes along the reference curve where numbers 1 and 21 represent the left and
right supports, respectively, and 19 "ctitious spacers are always used for all bundle
con"gurations.

Table 2 indicates that the percentage di!erences between the natural frequencies
produced by the hybrid and FE models are within an acceptable 1%. The natural
frequencies corresponding to a plunge (vertical) or swingback (horizontal) motion are
almost the same for a given number of loops per span, regardless of the number of
conductors. This behavior occurs because the mass and sti!ness in these directions change
almost identically with an increasing number of conductors. The torsional frequencies, on
the other hand, decrease noticeably as more conductors are added because the change in the
moment of inertia is greater than that for the sti!ness. Identical trends have also been
observed from existing bundle models [23, 11].

The hybrid and "nite element models are employed to investigate the dynamic limit cycle
amplitudes. From a practical viewpoint, one through three loops per span are usually
considered in North America because they are most frequent for galloping [1]. The
examples in this paper, however, only consider the mid-span and quarter span results for
one and two loops per span galloping, respectively, because the limit cycle amplitudes for
the three loops per span case are invariably much smaller. The initial placements of the
di!erent bundle con"gurations are shown in Figure 2. The corresponding aerodynamic
coe$cients, a

ij
, are given in Table 3 for h

static
"403 and h

static
"2703. Both the hybrid and

"nite element models predict that, regardless of the number of conductors in a bundle, the
TABLE 1

Iced C11 line properties

Parameter Data Parameter Data

d (m) 0)0286 A (mm2) 423)24
E (N/m2) 4)78033* 1010 m (kg/m) 2)379

GJ (N m2/rad) 101 m
y
, m

z
0)515* 10~3

I (kg m) 0)3334* 10~3 mh 0)308
H (N) 30000 r

i
(m) 0)2355

e
y
(mm) 2)05 ¸

x
(m) 125)88

e
z
(mm) !0)63 o

air
(kg/m3) 1)2929

A
ice

(mm2) 594)48 ;
z
(m/s) 4)0



TABLE 2

Comparison of natural frequencies (¸
x
"126 m, H"30 kN)

No. of
loops/span 1 2 3

Natural
Number of frequencies
conductors (Hz) u

y
u

z
uh u

y
u

z
uh u

y
u

z
uh

1 HM 0)482 0)445 1)091 0)891 0)892 4)003 1)337 1)339 6)384
FM 0)482 0)444 1)090 0)891 0)891 4)003 1)339 1)337 6)385

2 HM 0)482 0)443 0)635 0)892 0)893 1)174 1)341 1)347 1)737
FM 0)482 0)446 0)635 0)892 0)892 1)174 1)340 1)339 1)737

3 HM 0)482 0)443 0)555 0)892 0)893 1)062 1)341 1)347 1)581
FM 0)481 0)446 0)555 0)891 0)892 1)062 1)340 1)338 1)581

4 HM 0)481 0)443 0)553 0)892 0)893 1)060 1)341 1)347 1)578
FM 0)481 0)446 0)553 0)891 0)892 1)060 1)340 1)338 1)578

Note: HM*hybrid model; FM*"nite element model.
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initial equilibrium state is unstable at the assumed 4 m/s wind speed (i.e., the stability
criterion is "rst violated [15]). A 1 : 1 : 0 (u

y
: u

z
:uh) resonant galloping occurs in a one loop

per span motion for the single as well as for the bundle conductors. In addition, a 1 : 1 : 1
resonant galloping can occur but only for a two loops per span motion of the bundle
conductors. Figures 3(a) and (b) compare the resulting bulk motion limit cycles for one and
two loops per span motions respectively. The results from the hybrid model agree with the
FE predictions. The A

y
and A

z
used in this "gure correspond to the vertical and horizontal

limit cycle amplitudes for the single conductor or the reference curve of a bundle. It can be
seen from Figure 3(a) that the vertical amplitudes for the one loop per span case are
invariably comparable in magnitude. They are much greater than the horizontal
displacements for the bundle conductors so that the plunge motion dominates the one loop
per span galloping for the bundles. Therefore, it is not surprising that a predominantly
vertical conductor motion has a high percentage of occurrence in the "eld [1]. On the other
hand, Figure 3(b) suggests that the horizontal motion is comparable or larger in magnitude
to that of the plunge for a two loops per span oscillation. Therefore, the horizontal motion
should not be neglected in such cases.

5.2. CRITICAL AND HIGHER WIND SPEED TRENDS

Two static angles of attack, h
static

"40 or 2703, are selected to illustrate that the classical
Den Hartog criterion, which depends only upon the aerodynamic characteristics of the
conductors, does not necessarily give the initiation of galloping. According to this criterion,
an instability occurs when LC

L
/La#C

D
(0. C

L
and C

D
are purely the aerodynamic lift and

drag coe$cients, respectively, which are de"ned in Appendix A. The previously considered
single and bundle conductors are used again to determine how the ensuing dynamic limit
cycle amplitude changes with the critical wind speed and an increasing steady side wind
speed beyond this critical value.

Figure 4 shows the variation in the reduced critical wind speed, ;M
zc
";

zc
/ f¸

x
, and

the non-dimensional limit cycle amplitude, AM "JA2
y
#A2

z
/s

a
, at the static angle of attack



Figure 3. Limit cycle obtained at (a) the mid-span (1 loop/span) and (b) quarter-span (2 loops/span) for (i) a
single conductor, (ii) twin bundle, (iii) triple bundle, and (iv) a quad bundle (span length ¸

x
"125)88 m, horizontal

static tension H"30 kN, side wind speed ;
z
"4 m/s, a"03 and h

static
"403):0, Hybrid model;*, FE model.

Figure 4. Limit cycle amplitude ratio, AM , at di!erent critical wind speed ratios, ;M
zc

, for (a) one loop/span and
(b) two loops/span galloping (h

static
"403, a"03). -, Number of conductors (in a bundle); ?, stable at higher

values of ;M
zc

.

GALLOPING OF BUNDLE CONDUCTOR 125



126 Q. ZHANG E¹ A¸.
h
static

"403. (Note that this particular angle is illustrated in both Figures 1(b) and 2.) The f is
the lowest u

y
, the predominantly vertical natural frequency, ¸

x
is the horizontal span

length, and s
a
is the static sag at a line's mid-span. The "gure indicates that AM invariably

decreases as;M
zc

increases, immaterial of the number of loops per span and regardless of the
number of conductors in a bundle. However, the single conductor always has the lowest
AM at a given ;M

zc
. On the other hand, the vertical amplitude, A

y
, always dominates AM in

Figure 4(a) while A
z

is the principal component of AM in Figure 4(b). Figure 5 presents
analogous results to Figure 4(a) for h

static
"2703. Only data for the single conductor is
TABLE 3

Aerodynamic coe.cients for C11

Number of Coe$cients at a"03 and h
static

"403
conductors in

bundle i a
yi

a
zi

ahi

Single conductor 1 !0)1667 0)8605 !0)7272
2 !4)0547 0)8325 0)2935
3 8)3581 1)7815 5)9704

2 1 !0)3335 1)7210 !1)4543
2 !8)1094 1)6650 0)5869
3 16)7162 3)5631 11)9408

3 1 !0)5003 2)5815 !2)1815
2 !12)1614 2)4975 0)8804
3 25)0743 5)3447 17)9112

4 1 !0)6670 3)4420 !2)9086
2 !16)2188 3)3300 1)1738
3 33)4324 7)1262 23)8816

Coe$cients at h
static

"2703

Single conductor 1 0)9423 1)3186 !0)8567
2 !0)9245 !3)2000 0)9026
3 2)6352 !13)0623 !0)2353

Figure 5. Limit cycle amplitude ratio, AM , at di!erent critical wind speed ratios, ;M
zc

, for one loop/span galloping
of the single conductor (h

static
"2703).
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shown in Figure 5 because the bundle conductors are invariably stable when h
static

"2703.
The major di!erence from Figure 4(a) is that the Den Hartog criterion is satis"ed no longer
for the single conductor. (Table 3 indicates that LC

L
/La#C

D
is negative at h

static
"403 but

positive at h
static

"2703.) Despite this di!erence, the single conductor remains
Figure 7. Limit cycle amplitude ratios, AM
y

and AM
z
, at di!erent wind speed ratios, ;M

z
, for (a) one loop/span

galloping and (b) two loops/span galloping. -Notation as in Figure 4 (a"03, h
static

"403).

Figure 6. Limit cycle amplitude ratios, AM
y
and AM

z
, at di!erent wind speed ratios,;M

z
, for one loop/span galloping

of the single conductor (h
static

"2703).
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unstable*otherwise there would be no limit cycle amplitudes in Figure 5! Clearly, the
simple Den Hartog criterion is not always applicable. On the other hand, AM decreases again
with increasing ;M

zc
, albeit more rapidly at the lowest ;M

zc
.

Figures 6 and 7 give the changes in the component non-dimensional limit cycle
amplitudes, AM

y
and AM

z
, as the steady wind speed rises above the reduced critical wind speed,

;M
zc

, for h
static

"2703 and 403 respectively. In these "gures, the static horizontal tension is
H"30 kN, the span length is ¸

x
"126 m, ;M

z
";

z
/ f¸

x
, AM

y
"A

y
/s

a
and AM

z
"A

z
/s

a
. The

wind speed,;
z
, varies from a steady 4 m/s to a steady 6 m/s. Not surprisingly, both AM

y
and

AM
z
always grow as;M

z
and, hence, the wind's energy input to a line increases. As before, AM

y
is

invariably much larger than AM
z
for one loop per span galloping and usually vice versa for

two loops per span. The single conductor is the exception in the latter situation because the
internal resonance and, hence, the coupling between the torsional and vertical or horizontal
movements does not change. On the other hand, when galloping occurs, the number of
conductors in a bundle hardly a!ects AM

y
and AM

z
.

Figure 8. Limit cycle amplitude ratios, AM
y

and AM
z
, at various horizontal tension ratios, HM , for (a) one

loop/span galloping and (b) two loops/span galloping. Horizontal span length, ¸
x
, is invariably 126 m

(a"03, h
static

"403).



Figure 9. Limit cycle amplitude ratios, AM
y

and AM
z
, at various span length ratios, ¸

x
/s

a
, for (a) one loop/span

galloping (b) two loops/span galloping. Horizontal static tension, H, is always 30 kN (a"03, h
static

"403).
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5.3. TRENDS FOR STATIC HORIZONTAL TENSION AND SPAN LENGTH

The e!ects on AM
y

and AM
z

of increasing the non-dimensional static horizontal tension,
HM "H/w, and span length, ¸

x
/s

a
, are given in Figures 8 and 9, respectively, for h

static
"403.

Here w is the total weight of a bare conductor in one span. Both AM
y
and AM

z
invariably tend

to grow as either HM or ¸
x
/s

a
increases. The single loop per span case (Figures 8(a) and 9(a)) is

little di!erent to the comparable situation observed in Figure 7(a) for increasing ;M
z
.

However, unlike before, the twin bundle has somewhat smaller AM
y
and AM

z
than the triple

and quad bundles in two loops per span galloping, especially for enlarged HM . This di!erence
is caused likely by the di!erent torsional coupling to these components that arise from the
appreciably smaller rotation of the twin bundle at higher HM .

6. CONCLUSIONS

A #exible and computationally e$cient design tool is developed for bundle conductors.
Results for a particular ice shape suggest that the ratio of the limit cycle amplitude to the
mid-span's static sag invariably decreases as the critical wind speed ratio increases,
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regardless of the number of loops per span considered or the number of conductors in
a bundle. It also usually grows as the non-dimensional side wind speed (above the critical
value), horizontal tension or span length increase*again, immaterial of the number of
conductors. Den Hartog's criterion for the initiation of galloping is shown to be overly
simpli"ed.
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APPENDIX A: ELEMENTS OF M, K
a
AND F

A.1. MASS MATRIX, M

The representative elements, m
ij

(i, j"1, 2, 3), of the symmetrical mass matrix, M, that
appear in equation (14) are

m
11
"P

L

0
P
AT

odAf 2
v

ds#
p
+
k/1

m
sk

f 2
v

(s
k
), m

22
"P

L

0
P
AT

o dAf 2
w

ds#
p
+
k/1

m
sk

f 2
w

(s
k
), (A1)

m
33
"P

L

0
P
AT

o(y2#z2) dAf 2h ds#
p
+
k/1

I
sk

f 2h (s
k
), (A2)

m
13
"!P

L

0
P
AT

ozdAf
v
fh ds (A3)

and

m
23
"P

L

0
P
AT

oydAf
w

fh ds. (A4)

A.2. STIFFNESS MATRIX, K
a

The representative elements, K
ij

(i, j"1, 2, 3), of the symmetrical sti!ness matrix, Ka , in
equation (13) are

K
ij
"

n
+
k/1

D
ij P

L

0

b
i
b
j
f
i,s
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j, s
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where

D
ij
"(AE)

k
for all i and j other than 4,

D
ij
"B

T
for i"4 or j"4, iOj,

D
ij
"(GJ)

k
for i"j"4,

f
i,s
"

L f
i

Ls
, b

1
"

Lx

Ls
, Sb

2
, b

3
T"T

Ly

Ls
,
Lz

LsU, b
4
"1 (A6)

and

Q
k
"b

3
Q

1k
!b

2
Q

2k
, Q

1k
&r

k
cos h

k0
f
4,s

, Q
2k
"r

k
sin h

k0
f
4,s

. (A7)

Moreover,

n
2
"G

1,

0

i"j"4,

otherwise,
n
3
"G

1,

0

i"j"1, 2, 3,

otherwise,

n
4
"G

1,

0

i)3, j"4,

otherwise,
n
5
"G

1,

0

i"2, j"4,

otherwise,

n
6
"G

1,

0

i"3, j"4,

otherwise,
n
7
"G

1,

0

i"j"4,

otherwise.
(A8)

Here, i, j"1, 2, 3, 4 represent i, j"u, v, w, h for convenience, H is the horizontal
component of a conductor's static tension, ¹, and K

ice
, which is the sti!ness due to the

eccentric ice, is [24]

K
ice
"P

L

0
AP

AT

oy dABg f 2h ds. (A9)

Furthermore, K
x

is the sti!ness due to the static coupling of the span of interest with its
adjacent spans and insulator strings. It is given by [25, 26]

K
x
"

n
+
i/1
A

12(AE)
i
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12¸H3

i
#(AE)
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¸3
x

#

p
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¸

¸
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#

=
i

2¸
i
B . (A10)

¸
x

is the horizontal distance between adjacent towers, p
yi

is the total vertical load per unit
length of the ith conductor whereas =

i
and ¸

i
are the total weight and length of the

insulator string, respectively.

A.3. AERODYNAMIC LOAD, F

The elements of the aerodynamic load vector, F, used in equation (15) are

F
y
"1

2
o
air
;2

z
dC

y
, F

z
"1

2
o
air
;2

z
dC

z
, Fh"1

2
o
air
;2

z
d2Ch , (A11}A13)
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where
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and

A
ij
"P

L

0

a
ij

f j`1
h ds, i"y, z, h, j"1, 2, 3. (A17)

The aerodynamic coe$cients, a
ij
, are obtained by curve-"tting experimental, quasi-steady

wind loads in the neighborhood of the initially twisted conductor's pro"le sustained by the
moment arising from the eccentric ice weight [19]. The lift and drag coe$cients, C

L
and C

D
,

respectively, are given by

C
L
"C

y
cos a!C

z
sin a, C

D
"C

y
sin a#C

z
cos a. (A18, A19)

APPENDIX B: NOMENCLATURE

A, A
ice

cross-sectional area of a conductor that is bare and iced respectively
A

T
total cross-sectional area of all the iced conductors in a bundle

A
y
, A

z
, Ah limit cycle amplitudes in plunge, swingback and torsion, respectively

AM
y
, AM

z
non-dimensionalized A

y
and A

z
, e.g., AM

y
"A

y
/s

a
where s

a
is the static sag at

midspan
AM "JAM 2

y
#AM 2

z
non-dimensional limit cycle amplitude in the yz plane

B
T

axial-torsional coupling
C

L
, C

D
, Ch aerodynamic lift, drag and moment coe$cients, respectively, of a bundle

d diameter of a bare conductor
E, G modulus of elasticity and shear modulus of a bare conductor
f the lowest natural frequency in the vertical direction
g gravitational constant
H horizontal tension of a conductor
J inertial moment of a single bare conductor
¸, ¸

x
total length and horizontal span of a conductor

n, p number of conductors and spacers respectively
n
p

total number of ("nite element) nodes
q
i

(i"u, v, w, h) generalized co-ordinates
r
i

distance between the reference curve and the center of the ith conductor's
cross-section

s intrinsic co-ordinate along the reference curve
¹(i) transformation matrix from local to global co-ordinates
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x, y, z local co-ordinates
X, >, Z global co-ordinates
a wind's angle of attack at the reference curve
o
air

density of air
o mass density of the iced bundle conductors' total cross-sectional area
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